Evolution of the CHERNE network according to the new Erasmus+ program

I. Gerardy 1, J. Ródenas 2

1 Haute Ecole Paul-Henri Spaak (ISIB department), 150 rue Royale, Bruxelles, Belgium
2 Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Spain
Overview

- Introduction
- What is the CHERNE network
- Strategic partnership: Blended learning in radiation protection and radioecology
 - Objectives
 - Implementation
 - Sustainability
- Conclusions
Situation of the Higher Education in Nuclear Sciences

- Decreasing of the global teaching offer due to
 - financial restrictions
 - lower interest of the young generation

- Important technological challenges
 - Development of new Nuclear Power Plant technology (Generation IV)
 - New European BSS related to radiation protection
 - Dismantling of old installations and waste management

- Need of well trained professional workers
 - high level of skills and competencies with important practical training
What is the CHERNE Network

- Open network bringing together academic institutions involved in education in Nuclear Engineering and Radioprotection (www.cherne.ntua.gr)
- 21 partners representing 10 countries
- Created in 2005
- Allows the sharing of large experimental devices and specific competences of teaching staff
- Organizing different learning/research activities:
 - Specific course of an Institution open to students of partners (increase the teaching offer)
 - IP courses (with the support of the European Lifelong learning program)
 - Erasmus exchanges
 - Access to PhD
New possibilities linked to Erasmus 2020 program

- Possibility to create large partnership including non academic partners

Strategic Partnerships aim to:

- develop initiatives addressing one or more fields of education training
- promote innovation, exchange of experience and know-how between different types of organizations involved in education, training and youth or in other relevant fields.
Strategic partnership: Blended learning in radiation protection and radioecology

Objectives:

- Development of a blended learning program in radiation protection and radioecology
- Continuous education program for people already involved in radiation protection
- Acquisition of specific competences in the nuclear field for those who were not involved in nuclear and radiological techniques during their studies
- Contribution towards standardization of the knowledge across Europe in radiation protection and safe use of radioactive materials
Partnership:

- Academic Partners (from the CHERNE network) representing 7 countries:
 - HAUTE ECOLE PAUL-HENRI SPAAK (ISIB) – BELGIUM
 - UNIVERSITEIT HASSELT (UHasselt) - BELGIUM
 - FACHHOCHSCHULE AACHEN (FH Aachen) - GERMANY
 - UNIVERSITA DI BOLOGNA (UNIBO) - ITALY
 - UNIVERSIDADE DE COIMBRA - PORTUGAL
 - CZECH TECHNICAL UNIVERSITY IN PRAGUE (CTU) – CZECH REPUBLIC
 - NATIONAL TECHNICAL UNIVERSITY OF ATHENS (NTUA) - GREECE
 - UNIVERSITAT POLITECNICA DE VALENCIA (UPV) - SPAIN

- Non-academic partners to add value to the partnership:
 - a research institute: NATIONAL RADIATION PROTECTION INSTITUTE (SURO) – CZECH REPUBLIC
 - a regulatory body: GREEK ATOMIC ENERGY COMMISSION (EEAE) - GREECE

The non-academic partners have been chosen according to their competence in a specific field and their possibilities to promote the program during and after this project.
Development of the project

What are we trying to achieve?

- During the European funding: **to increase student employability** by offering a program that responds to the market needs:
 - E-learning platform
 - Real mobility
 - Internships
 - Certification (Europass Certificate Supplement and ECTS for students)

- After the funding: in addition to the first aim, we also want **to increase the qualifications of the people already involved in the work market** by:
 - Extending the e-learning modules to this specific audience

- Duration of the funding: 2 years (from September 2015 to end of June 2017)
Ways to fulfil the objectives

- Blended means:
 - E-learning (= virtual mobility)
 - Training courses (= real mobility)

- For the students:
 - E-learning modules will be used as a preparation for advanced course modules, for selection of the students in the case of practical sessions (pre-requisite) and finally for the follow-up of the global program
 - Real mobility to access large experimental devices not present in each country and to be given the opportunity to do an internship in other EU countries.

- For the workers:
 - E-learning mobility to acquire new competences and for continuous education purposes
Intellectual outputs: deliverable proposed

- O1: Analysis of the present situation in radiation protection and radioecology within the European countries
- O2: Implementation of course modules on an e-learning platform
- O3: Training in Radiation Protection and Radioecology

For each output, we have defined
- A leading institution
- Partners, regarding skills of each participant
Project Deliverables

- Database/report on the market needs
- E-learning platform (including internship platform)
- Mobility trainings
- Certifications (Europass Certificate Supplement for professionals, Europass Certificate Supplement and ECTS for students) in the radiation protection field that can be recognized by the national authorities of the partner institutions.

- One partner (UNIBO) will be responsible of the global assessment of the deliverables
01: Analysis of the present situation in radiation protection and radioecology within the European countries

- Leader: U Hasselt
- Aim:
 - Evaluation of the present situation
 - Evaluation of the need of the labour market in terms of skills and competences
- Deliverable:
 - Report will be presented next week during the CHERNE annual workshop and published on the project website
O2: Implementation of course modules on an e-learning platform

- Leader: EEAE (Greek Energy Atomic Commission) (organizing the platform)
- Coordinator of contents: NTUA (Technical University of Athens)
- Leader of each module have to coordinate the contents with Athens
- Aim:
 - Accessibility for workers
 - Pre-requisite for training modules
- Deliverable:
 - 6 e-learning modules of 2 ECTS each
 - Uploaded on a Moodle platform; power point, small web film and on-line exercises
 - First modules 1, 2, 4 and 5 are in a finalization phase and will be proposed during the winter term of next academic year to the students of each partner
 - Others will be presented during the summer term.
E-learning modules (1)

<table>
<thead>
<tr>
<th>Title</th>
<th>Basics nuclear and radiation physics</th>
<th>Basics of measurement and dosimetry</th>
<th>Radiation protection</th>
</tr>
</thead>
</table>
| **Subject** | • Radioactivity, radionuclides and ionizing radiations
• Nuclear reactions
• Applied nuclear physics
• Interaction between radiation and matter
• Description of a radiation beam | • Measurement of
• gamma, neutron,...
• Spectrometry
• Dosimetry | • Basic principles of radiation protection
• EU legislation
• Shielding evaluation
• ALARA principles |
| **Participants** | SURO, Coimbra | Athens, CTU | UPV, EEAE |
| **Leader** | CTU | FHAachen | SURO |
E-learning modules (2)

<table>
<thead>
<tr>
<th>Title</th>
<th>General safety principles</th>
<th>Basics radiochemistry</th>
<th>Medical applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject</td>
<td>• European legislation
• Risk related to industry (chemistry, electricity, biology)
• Risk assessment: methodology</td>
<td>• Introduction (principles, industrial applications of radionuclides)
• radiochemical working techniques
• decontamination techniques</td>
<td>• Medical techniques for diagnostics and therapy
• Quality assurance
• R P for workers and public
• R P for patients</td>
</tr>
<tr>
<td>Participants</td>
<td>ISIB</td>
<td>FHAachen, U Hasselt</td>
<td>Athens, (Unibo, FH Aachen) EEAE</td>
</tr>
<tr>
<td>Leader</td>
<td>UPV</td>
<td>ISIB</td>
<td>Coimbra</td>
</tr>
</tbody>
</table>
E-learning platform: use

- During the funded part of the SP, these e-learning modules will be used for:
 - the preparation of the training modules
 - the selection of the students in the case of practical sessions
 - the follow-up of the global program

- Afterwards, the modules
 - can be followed individually as continuous education for workers who need to develop specific skills (sustainability) with some fees
 - can become part of regular courses of academic partners
 - can be used for specific training in radiation protection (Radiation Protection Officer)
O3: Training in Radiation Protection and Radioecology

- Mobility training will consist in **5 days of experimental work on real devices.**
- The training modules will involve **student mobility** and **staff mobility** (from academic and non-academic partners).
- The **institutions** where the different modules will take place, will also be in charge of the development of each module.
 - These institutions have been chosen according to the experimental devices they can give access to.
 - But other partners can of course contribute to the development or the implementation of a part of the module.
- A total number of **16 students/module is foreseen.**
 - The student selection is based on their knowledge in **nuclear and radiation physics** (developed in the distance learning module) and in **English**
O3: Training in Radiation Protection and Radioecology

- Leader: CTU
- Aim:
 - Real mobility
 - Uses of large specific devices
- Deliverable: 6 training modules of 2 ECTS each
- A coordinator for each training activity have been defined
- Recognition
 - ECTS certificate to be used in the own institution
 - Europass Certificate Supplement delivered to increase participant employability.
Training modules (1)

<table>
<thead>
<tr>
<th>Title</th>
<th>probability risk assessment.</th>
<th>Environmental measurements</th>
<th>Safe industrial applications of radiation and radionuclides</th>
</tr>
</thead>
</table>
| Subject | • Principle of risk assessment
• Applications in nuclear industry.
• Exercises on software for specific cases | • Introductive lectures
• Field trip and sampling
• Analyze of samples in the laboratory | • Introductive lectures
• Radiation protection in industry: real manipulation on large devices
• ALARA workshop |
| Participants | ISIB | ISIB, SURO, NTUA | SURO, Coimbra, NTUA, FH Aachen |
| Leader | UPV (01-2017) | Uhasselt (04-2017) | CTU (09/2016) |
Training modules (2)

<table>
<thead>
<tr>
<th>Title</th>
<th>Radiochemistry</th>
<th>Radioactive waste management</th>
<th>Practical radiation protection in medical field</th>
</tr>
</thead>
</table>
| Subject | • Radiochemical techniques
 • Safe handling of radionuclides
 • Tracer applications
 • Decontamination techniques | • Identification of radioisotopes:
 • Evaluation of the activity, energy and efficiency calibration (experimental and/or MC calculation, Activity measurement in real samples) | • R P of the workers, patients and public
 • Practical cases
 • Measurement of doses
 • Calculation of shielding |
| Participants | EEAE, UPV | ISIB | Coimbra, CUT, GEAC |
| Leader | ISIB FHAachen, (09/2016) | FHAachen, Uhasselt | Unibo |
Sustainability of the training modules: Development of local partnership

- Material developed for training modules during the first phase of the strategic partnership can be re-used by partners
- “Geographic partnership” can be created to bring together teaching staff and students with low travel cost
- Encourage collaboration between partners acting in the same geographical area
- One “Geographic partnership” already exists since more than 5 years
 - Uhasselt and ISIB have developed since 2009 a 2 week intensive program dedicated to measurements of radionuclides in the environment
- Others can be created in relation with the development of an e-learning or a training module
Conclusions

- Regarding future **developments**, it is essential to maintain a high level of competences and skills in the framework of safe use of nuclear facilities, radiation protection and waste management.

- European harmonization is going on with the new BSS
 - Teaching and learning tools have to be developed within European collaborations.

- Erasmus + (2020) gives good opportunities to build a large partnership.

- Sustainability have to be achieved after European funding.