Evolution of the CHERNE network according to the new Erasmus+ program

I. Gerardy¹, J. Ródenas²

¹ Haute Ecole Paul-Henri Spaak (ISIB department), 150 rue Royale, Bruxelles, Belgium
 ² Departamento de Ingeniería Química y Nuclear, Universidad Politécnica de Valencia, Spain

Introduction

- What is the CHERNE network
- Strategic partnership: Blended learning in radiation protection and radioecology
 - Objectives
 - Implementation
 - Sustainability
- Conclusions

Situation of the Higher Education in Nuclear Sciences

- Decreasing of the global teaching offer due to
 - financial restrictions
 - Iower interest of the young generation
- Important technological challenges
 - Development of new Nuclear Power Plant technology (Generation IV)
 - New European BSS related to radiation protection
 - Dismantling of old installations and waste management
- Need of well trained professional workers
 - high level of skills and competencies with important practical training

What is the CHERNE Network

- Open network bringing together academic institutions involved in education in Nuclear Engineering and Radioprotection (www.cherne.ntua.gr)
- 21 partners representing 10 countries
- Created in 2005

- Allows the sharing of large experimental devices and specific competences of teaching staff
- Organizing different learning/research activities:
 - Specific course of an Institution open to students of partners (increase the teaching offer)
 - IP courses (with the support of the European Lifelong learning program)
 - Erasmus exchanges
 - Access to PhD

New possibilities linked to Erasmus 2020 program

Possibility to create large partnership including non academic partners

Strategic Partnerships aim to:

- develop initiatives addressing one or more fields of education training
- promote innovation, exchange of experience and know-how between different types of organizations involved in education, training and youth or in other relevant fields.

Strategic partnership: Blended learning in radiation protection and radioecology

Objectives:

- Development of a blended learning program in radiation protection and radioecology
- Continuous education program for people already <u>involved</u> in radiation protection
- Acquisition of specific competences in the nuclear field for those who were <u>not involved</u> in nuclear and radiological techniques during their studies
- Contribution towards standardization of the knowledge across Europe in radiation protection and safe use of radioactive materials

Partnership:

- Academic Partners (from the CHERNE network) representing 7 countries:
 - HAUTE ECOLE PAUL-HENRI SPAAK (ISIB) BELGIUM
 - UNIVERSITEIT HASSELT (UHasselt)- BELGIUM
 - FACHHOCHSCHULE AACHEN (FH Aachen) GERMANY
 - UNIVERSITA DI BOLOGNA (UNIBO) ITALY
 - UNIVERSIDADE DE COIMBRA PORTUGAL
 - CZECH TECHNICAL UNIVERSITY IN PRAGUE (CTU) CZECH REPUBLIC
 - NATIONAL TECHNICAL UNIVERSITY OF ATHENS (NTUA) GREECE
 - UNIVERSITAT POLITECNICA DE VALENCIA (UPV)- SPAIN
- Non-academic partners to add value to the partnership:
 - a research institute: NATIONAL RADIATION PROTECTION INSTITUTE (SURO) CZECH REPUBLIC
 - a regulatory body: GREEK ATOMIC ENERGY COMMISSION (EEAE) GREECE
- The non-academic partners have been chosen according to their competence in a specific field and their possibilities to promote the program during and after this project

Development of the project

- What are we trying to achieve?
 - During the European funding: to increase student employability by offering a program that responds to the market needs:
 - E-learning platform
 - Real mobility
 - Internships

- Certification (Europass Certificate Supplement and ECTS for students)
- After the funding: in addition to the first aim, we also want to increase the qualifications of the people already involved in the work market by:
 - Extending the e-learning modules to this specific audience
- Duration of the funding: 2 years (from September 2015 to end of June 2017)

Ways to fulfil the objectives

Blended means:

- E-learning (= virtual mobility)
- Training courses (= real mobility)
- For the students:
 - E-learning modules will be used as a preparation for advanced course modules, for selection of the students in the case of practical sessions (pre-requisite) and finally for the follow-up of the global program
 - Real mobility to access large experimental devices not present in each country and to be given the opportunity to do an internship in other EU countries.
- For the workers:
 - E-learning mobility to acquire new competences and for continuous education purposes

Intellectual outputs: deliverable proposed

- O1: Analysis of the present situation in radiation protection and radioecology within the European countries
- O2: Implementation of course modules on an e-learning platform
- O3: Training in Radiation Protection and Radioecology

For each output, we have defined

- A leading institution
- Partners, regarding skills of each participant

Project Deliverables

- Database/report on the market needs
- E-learning platform (including internship platform)
- Mobility trainings

- Certifications (Europass Certificate Supplement for professionals, Europass Certificate Supplement and ECTS for students) in the radiation protection field that can be recognized by the national authorities of the partner institutions.
- One partner (UNIBO) will be responsible of the global assessment of the deliverables

O1: Analysis of the present situation in radiation protection and radioecology within the European countries

- Leader: U Hasselt
- Aim:
 - Evaluation of the present situation
 - Evaluation of the need of the labour market in terms of skills and competences
- Deliverable:
 - Report will be presented next week during the CHERNE annual workshop and published on the project website

O2: Implementation of course modules on an e-learning platform

- Leader: EEAE (Greek Energy Atomic Commission) (organizing the platform)
- Coordinator of contents: NTUA (Technical University of Athens)
- Leader of each module have to coordinate the contents with Athens
- Aim:
 - Accessibility for workers
 - Pre-requisite for training modules
- Deliverable:
 - 6 e-learning modules of 2 ECTS each
 - Uploaded on a Moodle platform; power point, small web film and on-line exercises
 - First modules 1, 2, 4 and 5 are in a finalization phase and will be proposed during the winter term of next academic year to the students of each partner
 - Others will be presented during the summer term.

14

E-learning modules (1)

Title	Basics nuclear and radiation physics	Basics of measurement and dosimetry	Radiation protection
Subject	 Radioactivity, radionuclides and ionizing radiations Nuclear reactions Applied nuclear physics Interaction between radiation and matter Description of a radiation beam 	 Measurement of gamma, neutron, Spectrometry Dosimetry 	 Basic principles of radiation protection EU legislation Shielding evaluation ALARA principles
Participants	SURO, Coimbra	Athens, CTU	UPV, EEAE
Leader	CTU	FHAachen	SURO

E-learning modules (2)

Title	General safety principles	Basics radiochemistry	Medical applications
Subject	 European legislation Risk related to industry (chemistry, electricity, biology) Risk assessment: methodology 	 Introduction (principles, industrial applications of radionuclides) radiochemical working techniques decontamination techniques 	 Medical techniques for diagnostics and therapy Quality assurance R P for workers and public R P for patients
Participants	ISIB	FHAachen, U Hasselt	Athens, (Unibo, FH Aachen) EEAE
Leader	UPV	ISIB	Coimbra

E-learning platform: use

During the funded part of the SP, these e-learning modules will be used for:

- the preparation of the training modules
- the selection of the students in the case of practical sessions
- the follow-up of the global program
- Afterwards, the modules
 - can be followed individually as continuous education for workers who need to develop specific skills (sustainability) with some fees
 - can become part of regular courses of academic partners
 - can be used for specific training in radiation protection (Radiation Protection Officer)

O3: Training in Radiation Protection and Radioecology

- Mobility training will consist in 5 days of experimental work on real devices.
- The training modules will involve student mobility and staff mobility (from academic and non-academic partners).
- The institutions where the different modules will take place, will also be in charge of the development of each module.
 - These institutions have been chosen according to the experimental devices they can give access to.
 - But other partners can of course contribute to the development or the implementation of a part of the module.
- A total number of 16 students/module is foreseen.
 - The student selection is based on their knowledge in nuclear and radiation physics (developed in the distance learning module) and in English

O3: Training in Radiation Protection and Radioecology

- Leader: CTU
- Aim:
 - Real mobility
 - Uses of large specific devices
- Deliverable: 6 training modules of 2 ECTS each
- A coordinator for each training activity have been defined
- Recognition
 - ECTS certificate to be used in the own institution
 - Europass Certificate Supplement delivered to increase participant employability.

19

Training modules (1)

Title	probability risk assessment.	Environmental measurements	Safe industrial applications of radiation and radionuclides
Subject	 Principle of risk assessment Applications in nuclear industry. Exercises on software for specific cases 	 Introductive lectures Field trip and sampling Analyze of samples in the laboratory 	 Introductive lectures Radiation protection in industry: real manipulation on large devices ALARA workshop
Participants	ISIB	ISIB, SURO, NTUA	SURO, Coimbra, NTUA, FH Aachen
Leader	UPV (01-2017)	Uhasselt (04-2017)	CTU (09/2016)

20

Training modules (2)

Title	Radiochemistry	Radioactive waste management	Practical radiation protection in medical field
Subject	 Radiochemical techniques Safe handling of radionuclides Tracer applications Decontamination techniques 	 Identification of radioisotopes: Evaluation of the activity, energy and efficiency calibration(experimental and/or MC calculation, Activity measurement in real samples) 	 R P of the workers, patients and public Practical cases Measurement of doses Calculation of shielding
Participants	EEAE, UPV	ISIB	Coimbra, CUT, GEAC
Leader	ISIB FHAachen,(09/2016)	FHAachen, Uhasselt	Unibo

Sustainability of the training modules: Development of local partnership

- Material developed for training modules during the first phase of the strategic partnership can be re-used by partners
- "Geographic partnership" can be created to bring together teaching staff and students with low travel cost
- Encourage collaboration between partners acting in the same geographical area
- One "Geographic partnership" already exists since more than 5 years
 - Uhasselt and ISIB have developed since 2009 a 2 week intensive program dedicated to measurements of radionuclides in the environment
- Others can be created in relation with the development of an e-learning or a training module

Conclusions

- Regarding future developments, it is essential to maintain a high level of competences and skills in the framework of safe use of nuclear facilities, radiation protection and waste management
- European harmonization is going on with the new BSS
 - Teaching and learning tools have to be developed within European collaborations
- Erasmus + (2020) gives good opportunities to build a large partnership
- Sustainability have to be achieved after European funding